Search for: est time - PAS Journals (2024)

[1] Komarnicki P., Kranhold M., Styczynski Z., Sektorenkopplung. Energetisch-nachhaltige Wirtschaft der Zukunft, ISBN: 978-3-658-33559-5, Springer Verlag (2021), DOI: 10.1007/978-3-658-33559-5.

[2] Komarnicki P., Lombardi P., Styczynski Z., Elektrische Energiespeichersysteme - Flexibilitätsoptionen für Smart Gridshardcover, ISBN 978-3-662-62801-0, Springer Verlag (2021), DOI: 10.1007/978-3- 662-62802-7.

[3] Forschungsstelle für Energiewirtschaft e.V. (FfE), Abschlussbericht zum Projekt: Kurzstudie Elektromobilität Modellierung für die Szenarienentwicklung des Netzentwicklungsplan, München (2019).

[4] Dechent P., Epp A., Jöst D., Preger Y., Attia P., Li W., Sauer D.U., ENPOLITE: Comparing lithium-ion cells across energy, power, lifetime, and temperature, ACS Energy Letters, vol. 6, pp. 2351–2335 (2021), DOI: 10.1021/acsenergylett.1c00743.

[5] Sterner M., Stadler I., Handbook of energy storage. Demand, technologies, integration, Springer Verlag (2019), DOI: 10.1007/978-3-662-55504-0.

[6] Rudnicki T., Wojcicki S., Metody wyznaczania stanu naladowania akumulatorow stosowane w pojazdach elektrycznych, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (in Polish), vol. 3, ISSN 2083-0157 (2014), DOI: 10.5604/20830157.1121381.

[7] Hannam M.A., Lipu M.S.H., Hussain A., Mohamed A., A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations, Renewable and Sustainable Energy Review, vol. 78 pp. 834–854 (2017), DOI: 10.1016/j.rser.2017.05.001.

[8] Dai H., Jiang B., Hu X.-S., Lin X., Wei X., Pecht M., Advance battery management strategies for sustainable energy future: Multilayer design concept and research trends, Renewable and Sustainable Energy Review, vol. 138, p. 110480 (2021), DOI: 10.1016/j.rser.2020.110480.

[9] Waag W., Fleicher C., Sauer D.U., Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles, Journal of Power Sources, vol. 258, pp. 321–339 (2014), DOI: 10.1016/j.jpowsour.2014.02.064.

[10] Zhang Y.-J., Guo C., Liu Y.-G., Ding F., Chen Z., Hao W., A novel strategy for power sources management in connected plug-in hybrid electric vehicles based on mobile edge computation framework, Journal of Power Sources, vol. 477, p. 228650 (2020), DOI: 10.1016/j.jpowsour.2020.228650.

[11] Styczynski P., Lombardi P., Styczynski Z., Electric energy storage systems, Report CIGRE WG C6.15, ISBN: 978-2-85873-147-3, no. 458, CIGRE, Paris (2011), DOI: 10.1007/978-3-662-53275-1.

[12] Rancillo G., Pocha Pinto Lucas A., Kotsakis E., Fulli G., Merlo M., Delfanti M., Masera M., Modelling a large-scale battery energy storage system for power grid application analysis, Energies, vol. 12, no. 17, p. 3312 (2019), DOI: 10.3390/en12173312.

[13] Zeh A., Müller M., Naumann M., Hesse H.C., Jossen A., Witzmann R., Fundamentals of using battery energy storage systems to provide primary control reserves in Germany, Batteries, vol. 2, p. 49 (2016), DOI: 10.3390/batteries2030029.

[14] Komarnicki P., Energy storage systems: power grid and marked use cases, Archives of Electrical Engineering, vol. 65, no. 3, pp. 495–511 (2016), DOI: 10.1515/aee-2016-0036.

[15] Ceran B., A comparative analysis of energy storage technologies, Energy Policy Journal, vol. 21, no. 3, pp. 97–110 (2018), DOI: 10.24425/124498.

[16] Parol M., Rokicki L., Parol S., Towards optimal operation in rural low voltage microgrids, Bul- letin of Polish Academy of Sciences, Technical Sciences, vol. 67, no. 4, pp. 799–812 (2019), DOI: 10.24425/bpasts.2019.130189.

[17] Paliwal N.K., Singh A.K., Singh N.K., Short-term optimal energy management in stand-alone mi- crogrid with battery energy storage, Archives of Electrical Engineering, vol. 67, no. 3, pp. 499–513 (2017), DOI: 10.3390/en13061454.

[18] Kucevica D., Tepe B., Englberger S., Parlikar A., Mühlbauer M., Bohlen O., Jossen A., Hesse H., Standard battery energy storage system profiles: analysis of various applications for stationary energy storage systems using a holistic simulation framework, Journal of Energy Storage, vol. 28, no. 4,p. 101077 (2020), DOI: 10.1016/j.est.2019.101077.

[19] Ghazavidozein M., Gomis-Bellmunt O., Mancarella P., Simultaneous provision of dynamic active and reactive power response from utility-scale battery energy storage system in weak grids, IEEE Transactions on Power System (2021), DOI: 110.1109/TPWRS.2021.3076218.

[20] European Commission, Commission Regulation (EU) 2017/1485 of establishing a guideline on electricity transmission system operation, Official Journal of the European Union, vol. 220, pp. 1–120 (2017).

[21] Li X.-J., Yao L.-Z., Hui D., Optimal control and management of a large-scale battery energy storage system to mitigate fluctuation and intermittence of renewable generations, Journal of Modern Power Systems and Clean Energy, vol. 4, no. 4, pp. 593–603 (2016), DOI: 10.1007/s40565-016-0247-y.

[22] Podder S., Khan M.Z.R., Comparison of lead acid and Li-ion battery in solar home system of Bangladesh, 5th International Conference on Informatics, Electronics and Vision (ICIEV), pp. 434–438 (2016), DOI: 10.1109/ICIEV.2016.7760041.

[23] Hoppmann J., Volland J., Schmidt T.S., Hoffmann V.H., The economic viability of battery storage for residential solar photovoltaic systems – a review and a simulation model, Renewable and Sustainable Energy Reviews, vol. 39, pp. 1101–1118 (2014), DOI: 10.1016/j.rser.2014.07.068.

[24] Zhang R., Xia B., Li B., Cao L., Lai Y., Zheng W., Wang H., Wang W., State of the art of lithium-ion battery SOC estimation for electrical vehicles, Energies, vol. 11, no. 7, p. 1820 (2018), DOI: 10.3390/en11071820.

[25] Hallmann M., Wenge C., Komarnicki P., Evaluation methods for battery storage systems, IEEE 12thInternational Conference on Electrical Power Quality and Utilization (EPQU) (2020), DOI: 10.1109/EPQU50182.2020.9220321.

[26] Khandorin M.M., Estimation of the residual capacity of a lithium-ion battery in real time, (in Russian), in Khandorin M.M., Bukreev V.G. (eds.), Electrochemical power engineering (in Russian), pp. 65–693 (2014).

[27] May G.J., Standby batteries requirements for telecommunications power, Journal of Power Sources, vol. 158, no. 2, pp. 1117–1123 (2006), DOI: 10.1016/j.jpowsour.2006.02.083.


[28] Wikipedia, Electrical System of the International Space Station, https://en.wikipedia.org/wiki/Elect rical_system_of_the_International_Space_Station, accessed April 2021.

[29] Heussen K., Koch S., Ubig A., Anderson G., Unified system-level modeling of intermittent renewable energy sources and energy storage for power system operation, IEEE System Journal, vol. 6, no. 1, pp. 140–151 (2011), DOI: 10.1109/JSYST.2011.2163020.

[30] Buchholz B., Frey H., Lewaldt N., Stephanblome T., Schwagerl C., Styczynski Z.A., Advanced planning and operation of dispersed generation ensuring power quality, security and efficiency in distribution systems, CIGRE 2004, Invited paper C6-206, CD-ROM, Paris (2004).

[31] Codeca F., Savaresi S.M., Manzoni V., The mix estimation algorithm for battery state-of-charge estimator: analysis of the sensitivity to measurement errors, Proceedings of the 48th IEEE Con- ference on Decision and Control, held jointly with 28th Chinese Control Conference (2009), DOI: 10.1109/CDC.2009.5399759.

[32] Nejad S., Gladwin D.T., Stone D.A., Enhanced state-of-charge estimation for lithium-ion iron phosphate cells with flat open-circuit voltage curves, IECON2015-Yokohama, Japan (2015), DOI: 10.1109/IECON.2015.7392591.

[33] Huria T., Ceraolo M., Gazzarri J., Jackey R., Simplified extended Kalman filter observer for SOC estimation of commercial power-oriented LFP lithium battery cells, SAE World Congress, Technical Paper Series (2013), DOI: 10.4271/2013-01-1544.

[34] Baccouche I., Jemmali S., Manai B., Omar N., Amara N., Improved OCV model of a li-ion NMC battery for online SOC estimation using the extended Kalman filter, Energies, vol. 10, no. 6, p. 764 (2017), DOI: 10.3390/en10060764.

[35] Zhang C., Jiang J., Zhang L., Liu S., Wang L., Loh P., A generalized SOC-OCV model for lithium- ion batteries and the SOC estimation for LNMCO battery, Energies, vol. 9, no. 11, p. 900 (2016), DOI: 10.3390/en9110900.

[36] Zheng Y., Ouyang M., Han X., Lu L., Li J., Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles, Journal of Power Sources, vol. 377, pp. 161–188 (2018), DOI: 10.1016/j.jpowsour.2017.11.094.

[37] Chen M., Rincon-Mora G.A., Accurate electrical battery model capable of predicting runtime and I–V performance, IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 504–511 (2006), DOI: 10.1109/TEC.2006.874229.

[38] Thanagasundram S., Arunachala R., Makinejad K., Teutsch T., Jossen A., A cell level model for battery simulation, European Electric Vehicle Congress Brussels, Belgium (2012).

[39] Feng J.-H., Yang L., Zhao X.-W., Zhang H.-D., Qiang J., Online identification of lithium-ion bat- tery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction, Journal of Power Sources, vol. 281, pp. 192–203 (2015), DOI: 10.1016/j.jpowsour.2015.01.154.

[40] Rivera-Barrera J., Muñoz-Galeano N., Sarmiento-Maldonado H., SoC Estimation for lithium-ion Bat- teries: review and future challenges, Electronics, vol. 6, no. 4, p. 102 (2017), DOI: 10.3390/electronics6040102.

[41] He H., Xiong R., Fan J., Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach, Energies, vol. 4, no. 4, pp. 582–598 (2011), DOI: 10.3390/en4040582.

[42] Li Z., Huang J., Kiaw B.Y., Zjhang J., On state of charge determination for lithium-ion batteries, Journal of Power Sources, vol. 348, pp. 281–301 (2017), DOI: 10.1016/j.jpowsour.2017.03.001.

<[43] Attanayaka A., Karunadasa J.P., Hemapala K., Estimation of state of charge for lithium-ion batteries – a review, AIMS Energy, vol. 7, no. 2, pp. 186–210 (2019), DOI: 10.3934/energy.2019.2.186.

[44] Fleicher C., Waag W., Hey H.-M., Sauer D.U., On-line adaptive impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models: Part 2. Parameter and state estimation, Journal of Power Sources, vol. 262, pp. 457–482 (2014), DOI: 10.1016/j.jpowsour.2014.03.046.

[45] Zhang C., Allafi W., Dinh Q., Ascencio P., Marco J., Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique, Energy, vol. 142, pp. 678–688 (2018), DOI: 10.1016/j.energy.2017.10.043.

[46] Keil P., Jossen A., Aufbau und Parametrierung von Batteriemodellen. 19. DESIGN&ELEKTRONIK- Entwicklerforum Batterien & Ladekonzepte, München (2012), https://mediatum.ub.tum.de/doc/1162416/1162416.pdf, accessed April 2021.

[47] El Mejdoubi A., Oukaour A., Chaoui H., Gualous H., Sabor J., Slamani Y., State-of-charge and state-of- health lithium-ion batteries’ diagnosis according to surface temperature variation, IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2391–2402 (2016), DOI: 10.1109/TIE.2015.2509916.

[48] Chang W.-Y., The state of charge estimating methods for battery: a review, ISRN Applied Mathematics, pp. 1–7 (2013), DOI: 10.1155/2013/953792.

[49] Kalman R.E., A new approach to linear filtering and prediction problems, Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45 (1960), DOI: 10.1115/1.3662552.

[50] Meng J., Ricco M., Luo G., Swierczynski M., Stroe D.-I., Stroe A.-I., Teodorescu R., An overview and comparison of online implementable SOC estimation methods for lithium-ion battery, IEEE Transactions on Industry Applications, vol. 54, no. 2, pp. 1583–1591 (2018), DOI: 10.1109/TIA.2017.2775179.

[51] Duong V.H., Bastawrous H.A., Lim K.C., See K.W., Zhang P., Dou S.X., SOC estimation for LiFePO4 battery in EVs using recursive least-squares with multiple adaptive forgetting factors, 2014 International Conference on Connected Vehicles and Expo (ICCVE) (2014), DOI: 10.1109/IC-CVE.2014.7297603.

[52] Xia B., Huang R., Lao Z., Zhang R., Lai Y., Zheng W., Wang M., Online parameter identification of lithium-ion batteries using a novel multiple forgetting factor recursive least square algorithm, Energies, vol. 11, no. 11, p. 3180 (2018), DOI: 10.3390/en11113180.

[53] Sun X., Ji J., Ren B., Xie C., Yan D., Adaptive forgetting factor recursive least square algorithm for online identification of equivalent circuit model parameters of a lithium-ion battery, Energies, vol. 12, no. 12, p. 2242 (2019), DOI: 10.3390/en12122242.

[54] Chandra Shekar A., Anwar S., Real-time state-of-charge estimation via particle swarm optimization on a lithium-ion electrochemical cell model, Batteries, vol. 5, no. 1, p. 4 (2019), DOI: 10.3390/batteries5010004.

[55] Qays M.O., Buswig Y., Anyi M., Active cell balancing control method for series-connected lithium-ion battery, International Journal of Innovative Technology and Exploring Engineering (IJITEE) (2019), DOI: 10.35940/ijitee.i8905.078919.

[56] Zhang C.-W., Chen S.-R., Gao H.-B., Xu K.-J., Yang M.-Y., State of charge estimation of power battery using improved back propagation neural network, Batteries, vol. 4, no. 4, p. 69 (2018), DOI: 10.3390/batteries4040069.

[57] Jiménez-Bermejo D., Fraile-Ardanuy J., Castaño-Solis S., Merino J., Álvaro-Hermana R., Using dynamic neural networks for battery state of charge estimation in electric vehicles, Procedia Computer Science, vol. 130, pp. 533–540 (2018), DOI: 10.1016/j.procs.2018.04.077.

[58] Thirugnanam K., Ezhil Reena Joy T.P., Singh M., Kumar P., Mathematical modeling of li-ion battery using genetic algorithm approach for V2G applications, IEEE Transactions on Energy Conversion, vol. 29, no. 2, pp. 332–343 (2014), DOI: 10.1109/TEC.2014.2298460.

[59] Liu F., Ma J., Su W., Unscented particle filter for SOC estimation algorithm based on a dynamic parameter identification, Mathematical Problems in Engineering, no. 6, pp. 1–14 (2019), DOI: 10.1155/2019/7452079.

[60] Rozaqi L., Rijanto E., SOC estimation for li-ion battery using optimum RLS method based on genetic algorithm, 8th International Conference on Information Technology and Electrical Engineering (ICITEE) (2016), DOI: 10.1109/ICITEED.2016.7863224.

[61] Styczynski Z., Rudion K., Naumann A., Einführung in Expertensysteme, Springer Verlag (2018).

[62] Wei K., Wu J., Ma W., Li H., State of charge prediction for UAVs based on support vector machine, 7th International Symposium on Test Automation and Instrumentation (ISTAI) (2018), DOI: 10.1049/joe.2018.9201.

[63] Zhang W., Wang W., Lithium-ion battery SoC estimation based on online support vector regression, 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC) (2018), DOI: 10.1109/YAC.2018.8406438.

[64] Alvarez Anton J.C., Garcia Nieto P.J., Blanco Viejo C., Vilan Vilan J.A., Support vector machines used to estimate the battery state of charge, IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5919–5926 (2013), DOI: 10.1109/TPEL.2013.2243918.

[65] Rupp S., Modellierung von Anlagen und Systemen Teil 1, DHBW, CAS 2017, www.srupp.de/ENT/ TM20305_1_Modellierung_von_Anlagen_und_Systemen.pdf+&cd=1&hl=en&ct=clnk&gl=de, ac- cessed July 2021,

[66] Wenge C., Pietracho R., Balischewski S., Arendarski B., Lombardi P., Komarnicki P., Kasprzyk L., Multi Usage Applications of Li-Ion Battery Storage in a Large Photovoltaic Plant: A Practical Experience, Energies, vol. 13, no. 18, 4590 (2020), DOI: 10.3390/en13184590.

[67] Dambrowski J., Methoden der Ladezustandsbestimmung – mit Blick auf LiFePO4=Li4Ti5O 12-Systeme.


Search for: est time - PAS Journals (2024)

FAQs

What is the acceptance rate for Ijms? ›

Reviewers are given three weeks to complete their tasks. The IJMS acceptance rate in 2022 was 27.5% out of 502 submissions. Published articles in 2022 came from 34 different countries. The average time to a first decision is 4 days, 117 days for acceptance, and 10 days to decline a submission.

What is the rejection rate for MDPI? ›

Under half of the submissions are accepted

Overall, 381,100 submissions were received in 2020, for which the rejection rate was 57%. Not all papers are appropriate for the journal, collection or Special Issue to which they have been submitted, and not all submitted research reflects MDPI's core values.

What is the best search engine for journal articles? ›

Google Scholar is the clear number one when it comes to academic search engines.

Does Google Scholar search full text? ›

Google Scholar aims to rank documents the way researchers do, weighing the full text of each document, where it was published, who it was written by, as well as how often and how recently it has been cited in other scholarly literature.

Is IJMS a Q1 journal? ›

The scope of the journal is focused on molecular science. It has an SJR impact factor of 1,154 and it has a best quartile of Q1. It is published in English. It has an SJR impact factor of 1,154.

What is the acceptance rate for PNAS manuscript? ›

The final decision for acceptance or rejection of a manuscript is made by a scientist with expertise in the field and all decisions are reviewed by an NAS member. The PNAS Editorial Board declines 54% of all Direct Submissions at the initial screening, and the overall acceptance rate is only 17%.

Which is better Elsevier or MDPI? ›

There are a lot of countries that regard MDPI as a credible publisher and then I have also seen professors in some countries that do not encourage publishing with MDPI, only because of their speedy article review process. On the contrary, Elsevier takes comparatively longer time in the review process.

Is an impact factor of 4.7 good? ›

In general, an impact factor of 10 or higher is considered remarkable, while 3 is good, and the average score is less than 1. 🍍 Who invented the impact factor? Eugene Garfield, the founder of the Institute for Scientific Information (ISI), invented the measurement known as impact factor.

What is the problem with MDPI journals? ›

Some MDPI titles published four special issues a day. Skeptics worry the practice is especially vulnerable to manipulation by guest editors who lack expertise, have conflicts of interest, or accept fabricated manuscripts produced by paper mills.

How do you search for journal articles effectively? ›

Your Search: Finding RELEVANT Articles

Concepts are typically nouns or noun phrases. Using a databases' Advanced Search, enter each concept and its synonyms into a separate search line. Use quotation marks around phrases, these are typically noun phrases that you would find a definition of in a dictionary.

How do you identify a good journal article? ›

Assessing Journal Credibility
  1. Where is it indexed? Is the journal included or indexed in the major bibliographic databases for the field? ...
  2. What is its publishing history? How long has the journal been available? ...
  3. Is it peer-reviewed? How long does the peer review process take? ...
  4. What is its impact factor?

How to tell if an article is peer-reviewed? ›

You can type the name of the journal into any search engine and learn about the submission process to see if it is peer reviewed. Additionally, if you use the library search or a database to find articles, they will usually indicate if it is from a peer reviewed journal.

How to identify a predatory journal? ›

  1. A name that mimics the name of a reputed journal.
  2. An exceedingly wide scope.
  3. An unconventional number of publications per year (e.g. too many or too few)
  4. Articles that are poor in quality or are difficult to find/access.
  5. ISSN numbers that are missing or “pending”

Why is Google Scholar better than Google? ›

Google: Google indexes the entire web and is different from Google Scholar. Google Scholar: Google Scholar indexes a wide range of scholarly literature. Use of the Google Scholar search box will provide many search results, most of which are scholarly in nature.

How many citations is good on Google Scholar? ›

With 10 or more citations, your work is now in the top 24% of the most cited work worldwide; this increased to the top 1.8% as you reach 100 or more citations. Main take home message: the average citation per manuscript is clearly below 10!

What is the acceptance rate for the Human Relations journal? ›

Acceptance rate

We received 1,415 submissions in 2023 and accepted 3% of these articles.

What is the acceptance rate for the American journal of Physics? ›

Now, because AJP rejects approximately 60% of articles without review, the acceptance rate for reviewed manuscripts is closer to 35%. This rate is a more useful gauge for authors who are interested in submitting to AJP (at least those who have read and understand the editorial policy5).

What is the acceptance rate for the journal of American Studies? ›

American Studies uses a double-anonymous peer-review process. Each submission that moves through the process is typically sent to three readers: two from the editorial board and one specialist. AMSJ's acceptance rate is approximately 25%.

What is the acceptance rate for the journal of physical chemistry letters? ›

The acceptance rate of the Journal of Chemistry Letters was 60% in 2020. The average time between submission and final decision is eight weeks and the average time between acceptance and publication is two weeks.

References

Top Articles
Latest Posts
Article information

Author: Delena Feil

Last Updated:

Views: 5595

Rating: 4.4 / 5 (65 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Delena Feil

Birthday: 1998-08-29

Address: 747 Lubowitz Run, Sidmouth, HI 90646-5543

Phone: +99513241752844

Job: Design Supervisor

Hobby: Digital arts, Lacemaking, Air sports, Running, Scouting, Shooting, Puzzles

Introduction: My name is Delena Feil, I am a clean, splendid, calm, fancy, jolly, bright, faithful person who loves writing and wants to share my knowledge and understanding with you.